Mixed Fourier-generalized Jacobi Rational Spectral Method for Two-dimensional Exterior Problems

نویسندگان

  • JINGXIA WU
  • ZHONGQING WANG
  • Z. WANG
چکیده

In this paper, we develop a mixed Fourier-generalized Jacobi rational spectral method for two-dimensional exterior problems. Some basic results on the mixed Fourier-generalized Jacobi rational orthogonal approximations are established. Two model problems are considered. The convergence for the linear problem is proved. Numerical results demonstrate its spectral accuracy and efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of the Wiener rational basis functions on infinite intervals: Part I-derivation and properties

We formulate and derive a generalization of an orthogonal rationalfunction basis for spectral expansions over the infinite or semi-infinite interval. The original functions, first presented by Wiener, are a mapping and weighting of the Fourier basis to the infinite interval. By identifying the Fourier series as a biorthogonal composition of Jacobi polynomials/functions, we are able to define ge...

متن کامل

Mixed Spectral and Pseudospectral Methods for a Nonlinear Strongly Damped Wave Equation in an Exterior Domain

The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc, using Fourier and generalized Laguerre functions. As an example, we consider a nonlinear strongly damped wave equation. The mixed spectral and pseudospectral schemes are proposed. The convergence is proved. Numerical results demonstrate the efficiency of this approach. AMS su...

متن کامل

A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations

We present a semi-Lagrangian method for integrating the three-dimensional incompressible NavierStokes equations. We develop stable schemes of second-order accuracy in time and spectral accuracy in space. Specifically, we employ a spectral element (Jacobi) expansion in one direction and Fourier collocation in the other two directions. We demonstrate exponential convergence for this method, and i...

متن کامل

Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an infinite channel

In this paper, we propose a composite generalized LaguerreLegendre spectral method for partial differential equations on two-dimensional unbounded domains, which are not of standard types. Some approximation results are established, which are the mixed generalized Laguerre-Legendre approximations coupled with domain decomposition. These results play an important role in the related spectral met...

متن کامل

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012